Raman spectroscopy of iron to 152 gigapascals: implications for Earth's inner core
نویسندگان
چکیده
Raman spectra of hexagonal close-packed iron (varepsilon-Fe) have been measured from 15 to 152 gigapascals by using diamond-anvil cells with ultrapure synthetic diamond anvils. The results give a Gruneisen parameter gamma(0) = 1.68 (+/-0.20) and q = 0.7 (+/-0.5). Phenomenological modeling shows that the Raman-active mode can be approximately correlated with an acoustic phonon and thus provides direct information about the high-pressure elastic properties of iron, which have been controversial. In particular, the C(44) elastic modulus is found to be lower than previous determinations. This leads to changes of about 35% at core pressures for shear wave anisotropies.
منابع مشابه
Iron-silicon alloy in Earth's core?
We have investigated the phase relations in the iron-rich portion of the iron-silicon (Fe-Si) alloys at high pressures and temperatures. Our study indicates that Si alloyed with Fe can stabilize the body-centered cubic (bcc) phase up to at least 84 gigapascals (compared to approximately 10 gigapascals for pure Fe) and 2400 kelvin. Earth's inner core may be composed of hexagonal close-packed (hc...
متن کاملStrong premelting effect in the elastic properties of hcp-Fe under inner-core conditions.
The observed shear-wave velocity VS in Earth's core is much lower than expected from mineralogical models derived from both calculations and experiments. A number of explanations have been proposed, but none sufficiently explain the seismological observations. Using ab initio molecular dynamics simulations, we obtained the elastic properties of hexagonal close-packed iron (hcp-Fe) at 360 gigapa...
متن کاملPhonon density of states of iron up to 153 gigapascals.
We report phonon densities of states (DOS) of iron measured by nuclear resonant inelastic x-ray scattering to 153 gigapascals and calculated from ab initio theory. Qualitatively, they are in agreement, but the theory predicts density at higher energies. From the DOS, we derive elastic and thermodynamic parameters of iron, including shear modulus, compressional and shear velocities, heat capacit...
متن کاملSeismological constraints on core composition from Fe-O-S liquid immiscibility.
Earth's core is composed primarily of iron (Fe) with about 10% by weight of lighter elements. The lighter elements are progressively enriched in the liquid outer core as the core cools and the inner core crystallizes. Thermodynamic modeling of Fe-O-S liquids shows that immiscible liquids can exist at outer-core pressures (136 to 330 gigapascals) at temperatures below 5200 kelvin and lead to lay...
متن کاملConstraints on Earth’s inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions
Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 288 5471 شماره
صفحات -
تاریخ انتشار 2000